Personal tools
Document Actions

Mixed quantum-classical simulations of charge transport in organic materials: Numerical benchmark of the Su-Schrieffer-Heeger model

Linjun Wang, David Beljonne, Liping Chen, and Qiang Shi, New York (2011)

The electron-phonon coupling is critical in determining the intrinsic charge carrier and exciton transport properties in organic materials. In this study, we consider a Su-Schrieffer-Heeger (SSH) model for molecular crystals, and perform numerical benchmark studies for different strategies of simulating the mixed quantum-classical dynamics. These methods, which differ in the selection of initial conditions and the representation used to solve the time evolution of the quantum carriers, are shown to yield similar equilibrium diffusion properties. A hybrid approach combining molecular dynamics simulations of nuclear motion and quantum-chemical calculations of the electronic Hamiltonian at each geometric configuration appears as an attractive strategy to model charge dynamics in large size systems “on the fly,” yet it relies on the assumption that the quantum carriers do not impact the nuclear dynamics. We find that such an approximation systematically results in overestimated charge-carrier mobilities, with the associated error being negligible when the room-temperature mobility exceeds ∼4.8 cm2/Vs (∼0.14 cm2/Vs) in one-dimensional (two-dimensional) crystals.

Partners : UMons

Place of Publication : New York

Date of Publication : 2011/06/29

Additional Data : J. Chem. Phys. 134, 244116 (2011); doi:10.1063/1.3604561 (8 pages)

Link to the online version of the article.